1. **DESCRIPTION:** Teams must construct a collecting device prior to the tournament that is designed to collect heat and complete a written test on alternative energy concepts.

A TEAM OF UP TO: 2
IMPOUND: No
APPROX. TIME: 50 minutes

2. **EVENT PARAMETERS:**
 a. Each team may bring one three-ring binder of any size containing information in any form and from any source, attached using the available rings. Sheet protectors, lamination, tabs and labels are permitted. Participants may remove information or pages for their use during any part of the event.
 b. Each team may bring their heat collection device, an unaltered, glass or plastic, standard (height ~1.4 times the diameter) 250 mL beaker, copies of graphs and/or tables for scoring, tools, supplies, writing utensils, and two stand-alone calculators of any type for use during any part of the event.
 c. Event supervisors will supply the water, and thermometers or probes (recommended). Non-contact thermometers are allowed.
 d. Participants must be able to answer questions regarding the design, construction, and operation of the device per the Building Policy found on www.soinc.org.

3. **CONSTRUCTION PARAMETERS:**
 a. Devices may be constructed of and contain any materials (e.g., cardboard, aluminum foil, reflective fabric or material, glue, tape, mirrors, tiles and lenses).
 b. The device, including beaker, must fit within a 35.0 cm x 35.0 cm x 35.0 cm cube when set up for testing.
 c. Within the device, participants must be able to insert and remove a beaker that they supply (see 2.b).
 d. The device must also easily accommodate the insertion and removal of a thermometer/probe into the beaker. Parts of the device may be inside the beaker, but the device must not contact the water.
 e. Devices will be inspected to ensure that there are no energy sources (e.g., no electrical components, small battery powered heaters, chemical reactions, etc.) to help warm the water. At the event supervisor’s discretion, teams must disassemble their devices at the end of the testing period in order to verify the materials used in construction.
 f. All parts of the device must not be significantly different from room temperature at the start of the event.
 g. Prior to competition, teams must calibrate devices by preparing graphs/tables showing the relationship between elapsed time and water temperature. A labeled device diagram should be included.
 i. Any number of graphs and/or data tables may be submitted but the team must indicate up to four to be used for the Chart Score, otherwise the first four provided are scored.
 ii. Graphs and/or tables may be computer generated or drawn by hand on graph paper. Each data series counts as a separate graph. A template is available at www.soinc.org.
 iii. Teams are encouraged to have a duplicate set to use, as those submitted may not be returned.

4. **THE COMPETITION:**
 Part I: Written Test
 a. Teams will be given a minimum of 20 minutes to complete a written test consisting of multiple choice, true-false, completion, or calculation questions/problems.
 b. Unless otherwise requested, answers must be in metric units with appropriate significant figures.
 c. The competition must consist of at least five questions from each of the following areas:
 i. Basic information and definitions about energy, work, heat and heat transfer, temperature, temperature scales, thermal energy and insulation.
 ii. General information about renewable energy including but not limited to solar, wind, hydroelectric, tidal, ocean thermal energy conversion (OTEC), and geothermal.
 iii. General information about energy conservation practices including but not limited to recycling, reusing, and using materials with greater efficiency.
 iv. Mathematical relationships and equations used in determining heat loss and gain, specific heat, and heat transfer.
 Part II: Device Testing
 a. At the start of the competition block, teams will be given 5 minutes to set up or modify their devices and use their graphs and/or tables to calibrate them. Devices that do not meet the construction specs will not be allowed to be tested until brought into specification.
b. At each station, the event supervisor will provide an incandescent lamp with a bell-shaped reflector. The lamp will be mounted, facing down, above the testing surface (on which teams will set up their device) such that the bottom of the bulb is at least 40.0 cm from the testing surface. Multiple identical stations may be used.

c. At the start of a team’s device testing period the supervisor, using their own measuring device, will dispense 100 mL of water into the team’s beaker. A team may elect to install the beaker in a device prior to this, but must leave sufficient access to the beaker. Otherwise the team may then place the beaker into their device.

d. Teams will use their graphs and/or tables to predict the temperature of the water in their beaker at the end of the 10-minute heating time. After receiving water, teams will be given at least 3, but no more than 5 minutes to make their final predictions. During this time, teams may use their own thermometers to measure the starting water temperature in their beaker, but after this time must remove them.

e. The supervisor will insert a probe/digital thermometer into the water to measure and record the initial temperature to the nearest tenth of a degree. Supervisors may leave thermometers/probes in the devices for the entire heating period, but will announce if they will do so before impound. Otherwise they will insert a thermometer/probe into the beaker in the device, wait at least 20 seconds, and record the resulting temperature. Multiple thermometers/probes may be used at the supervisor’s discretion.

f. The light source must be turned on and a stopwatch started. At the end of 10 minutes the light will be turned off and the thermometer/probe will be read and recorded to the nearest tenth of a degree to determine the gain in temperature.

g. The supervisor will review with the team the Part II data recorded on their scoresheet.

h. Teams filing an appeal regarding Part II must leave their device in the competition area.

5. SCORING:
 a. High score wins.
 b. All scoring calculations are to be done in degrees Celsius.
 c. Final Score (FS) = TS + CS + HS + PS; The maximum possible FS is 100 points. A scoring spreadsheet is available at www.soinc.org.
 d. Test Score (TS) = (Part I score / Highest Part I score for all teams) x 50 points
 e. Chart Score (CS): One of the submitted graphs/tables, selected by the Event Supervisor, is scored using items i., ii., and iii., described below for a maximum of 6 points. Four (4) additional CS points are available via items iv. and v. Partial credit may be given. A device must be present to receive a CS.
 i. 2 points for including data spanning at least one variable range
 ii. 2 points for including at least 10 data points
 iii. 2 points for proper labeling (e.g., title, team name, units)
 iv. 0.5 points for each distinct graph or table turned in (up to 2 points total)
 v. 2 points for including a labeled device diagram
 f. Heat Score (HS) = (HRF / Highest HRF of all teams) x 15 points; HRF (Heat Retention Factor) = (final beaker water temp / starting beaker water temp)
 g. Prediction Score (PS) = (PE / Highest PE of all teams) x 25 points; PE (Prediction Estimate) = (1-(abs (final beaker water temp - predicted final beaker water temp) / final beaker water temp)). The minimum PS possible is 0 points.
 h. If a team violates any COMPETITION rules, their HRF and PE values will be multiplied by 0.9 when calculating the scores.
 i. If any CONSTRUCTION violation(s) are corrected during the Part II testing period the HRF and PE values will be multiplied by 0.7 when calculating the scores.
 j. Teams that are disqualified for unsafe operation or do not bring a collecting device receive zero points for their HRF and PE scores. Teams will be allowed to compete in Part I.
 k. Tie Breakers: 1st — Best TS; 2nd — Best HS; 3rd — Best PS

Recommended Resources: The Science Olympiad Store (store.soinc.org) carries a variety of resources to purchase for this event; other resources are on the Event Pages at soinc.org
GENERAL RULES, CODE OF ETHICS, AND SPIRIT OF THE PROBLEM

The goal of competition is to give one’s best effort while displaying honesty, integrity, and good sportsmanship. Everyone is expected to display courtesy and respect - see Science Olympiad Pledges. Teams are expected to make an honest effort to follow the rules and the spirit of the problem (not interpret the rules so they have an unfair advantage). Failure by a participant, coach, or guest to abide by these codes, accepted safety procedures, or rules below, may result in an assessment of penalty points or, in rare cases, disqualification by the tournament director from the event, the tournament, or future tournaments.

1. Actions and items (e.g., tools, notes, resources, supplies, electronics, etc.) are permitted, unless they are explicitly excluded in the rules, are unsafe, or violate the spirit of the problem.

2. While competing in an event, participants may not leave without the event supervisor’s approval and must not receive any external assistance. All electronic devices capable of external communication as well as calculator applications on multipurpose devices (e.g., laptop, phone, tablet) are not permitted unless expressly permitted in the event rule or by an event supervisor. Cell phones, if not permitted, must be turned off. At the discretion of the event supervisor, participants may be required to place their cell phones in a designated location.

3. Participants, coaches and other adults are responsible for ensuring that any applicable school or Science Olympiad policy, law, or regulation is not broken. All Science Olympiad content such as policies, requirements, clarifications/changes and FAQs on www.soinc.org must be treated as if it were included in the printed rules.

4. All pre-built devices presented for judging must be constructed, impounded, and operated by one or more of the 15 current team members unless stated otherwise in the rules. If a device has been removed from the event area, appeals related to that device will not be considered.

5. Officials are encouraged to apply the least restrictive penalty for rules infractions - see examples in the Scoring Guidelines. Event supervisors must provide prompt notification of any penalty, disqualification or tier ranking.

6. State and regional tournament directors must notify teams of any site-dependent rule or other rule modification with as much notice as possible, ideally at least 30 days prior to the tournament.
Each team may bring any or all of the items listed below for use in Division C Chemistry Events requiring laboratory equipment. Teams not bringing these items will be at a disadvantage as Event Supervisors will not provide the listed lab equipment. A penalty of up to 10% may be given if a team brings prohibited lab equipment to the event.

<table>
<thead>
<tr>
<th>Item & Expected Use</th>
<th>Likely to be used in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box - Containing all of the kit materials</td>
<td>Chemistry Lab X Forensics X Environmental Chemistry X Materials Science X</td>
</tr>
<tr>
<td>Graduated Cylinders (10 - 100 mL) - Measuring volumes</td>
<td>X</td>
</tr>
<tr>
<td>Beakers (50 - 500 mL) - Doing reactions, developing chromatograms</td>
<td>X X X X</td>
</tr>
<tr>
<td>Erlenmeyer Flasks (10 - 250 mL) - Doing reactions</td>
<td>X</td>
</tr>
<tr>
<td>Test Tubes - Mix Chemicals, heat chemicals</td>
<td>X X X X</td>
</tr>
<tr>
<td>Test Tube Brush - Clean Test Tubes</td>
<td>X X X X</td>
</tr>
<tr>
<td>Test Tube Holder - Holds test tubes for heating</td>
<td>X</td>
</tr>
<tr>
<td>Test Tube Rack - Hold Test Tubes</td>
<td>X X X X</td>
</tr>
<tr>
<td>Spot Plates - For semi-micro scale reactions, testing solubility, pH</td>
<td>X X X X</td>
</tr>
<tr>
<td>Petri Dishes - Doing reactions, developing chromatograms</td>
<td>X X X X</td>
</tr>
<tr>
<td>Slides - To put hairs, crystals, or fibers on for use with a microscope</td>
<td>X</td>
</tr>
<tr>
<td>Cover Slips - To cover & prevent items from coming off slides</td>
<td>X</td>
</tr>
<tr>
<td>Droppers - Add small amounts of liquids to reactions</td>
<td>X X X X</td>
</tr>
<tr>
<td>Spatulas or spoons - Getting small amounts of solids out of containers</td>
<td>X X X X</td>
</tr>
<tr>
<td>Metal Tongs, Forceps, or Tweezers – Holding & retrieving objects</td>
<td>X X X X</td>
</tr>
<tr>
<td>Stirring Rods - Stirring mixtures</td>
<td>X X X X</td>
</tr>
<tr>
<td>Thermometer - Determining the temperature of a solution</td>
<td>X X X X</td>
</tr>
<tr>
<td>pH paper/meter - Test acidity or alkalinity of solution</td>
<td>X X X X</td>
</tr>
<tr>
<td>Hand Lens - Magnification of small items for identification</td>
<td>X</td>
</tr>
<tr>
<td>Flame Loop – For identification of ions in a compound</td>
<td>X</td>
</tr>
<tr>
<td>Filter Paper - Filter solids from liquids</td>
<td>X X X X</td>
</tr>
<tr>
<td>Funnel - Hold Filter Paper</td>
<td>X X X X</td>
</tr>
<tr>
<td>9V battery - Electrolysis</td>
<td>X X X X</td>
</tr>
<tr>
<td>Alligator Clip Wires - Connecting meters to metals</td>
<td>X X X X</td>
</tr>
<tr>
<td>Nail - Electrolysis</td>
<td>X X X X</td>
</tr>
<tr>
<td>Piece of Cu metal - Electrolysis</td>
<td>X X X X</td>
</tr>
<tr>
<td>Piece of Zn metal - Electrolysis</td>
<td>X X X X</td>
</tr>
<tr>
<td>Multimeter - Measuring current, voltage, and resistivity</td>
<td>X X X X</td>
</tr>
<tr>
<td>9V or less Battery Conductivity Tester - Determining ionic strength of solution</td>
<td>X X X X</td>
</tr>
<tr>
<td>Calipers-mechanical, not digital - Measuring lengths very precisely</td>
<td>X X X X</td>
</tr>
<tr>
<td>Paper Towels - Cleaning</td>
<td>X X X X</td>
</tr>
<tr>
<td>Pencil - Writing, Marking Chromatogram</td>
<td>X</td>
</tr>
<tr>
<td>Ruler - Measuring lengths</td>
<td>X</td>
</tr>
<tr>
<td>Magnets – For extraction and identification of iron filings</td>
<td>X X X X</td>
</tr>
<tr>
<td>Cobalt Blue Glass – To filter out any sodium that might contaminate flame test from hands</td>
<td>X</td>
</tr>
</tbody>
</table>
The following document was prepared to offer some guidance to teams as they select calculators for use in different Science Olympiad events. By no means are the calculators listed here inclusive of all possible calculators; instead they are offered as common examples. The decisions of the event supervisors will be final.

Class I - Stand-alone non-graphing, non-programmable, non-scientific 4-function or 5-function calculators

are the most basic type of calculators and often look like the one shown to the right. These calculators are limited to the four basic mathematics functions and sometimes square roots. These calculators can often be found at dollar stores.

Class II - Stand-alone non-programmable, non-graphing calculators look like the calculator to the right or simpler. There are hundreds of calculators in this category but some common examples include: CASIO FX-260, Sharp EL-501, and TI-30X.

Class III - Stand-alone, programmable, graphing calculators and stand-alone non-graphing, programmable calculators, often look like the calculator shown on the right. Some examples are: Casio 975/9850/9860, HP 40/50/PRIME, and TI 83/84/89/NSPIRE/VOYAGE.

To identify a stand-alone non-graphing, programmable calculators look for the presence of the ‘EXE’ button, the ‘Prog’ button, or a ‘file’ button. Examples include but are not limited to: Casio Super FXs, numerous older Casio models, and HP 35S. A calculator of this type with the buttons labeled is shown to the right.

Class IV - Calculator applications on multipurpose devices (e.g., laptop, phone, tablet, watch) are not allowed unless expressly permitted in the event rule.
This resource was created to help teams comply with the Science Olympiad Policy on Eye Protection adopted on July 29, 2015 and posted on the Science Olympiad Website (soinc.org).

Participant/Coach Responsibilities: Participants are responsible for providing their own protective eyewear. Science Olympiad is unable to determine the degree of hazard presented by equipment, materials and devices brought by the teams. Coaches must ensure the eye protection participants bring is adequate for the hazard. All protective eyewear must bear the manufacturer’s mark Z87. At a tournament, teams without adequate eye protection will be given a chance to obtain eye protection if their assigned time permits. If required by the event, participants will not be allowed to compete without adequate eye protection. This is **non-negotiable**.

Corresponding Standards: Protective eyewear used in Science Olympiad must be manufactured to meet the American National Standards Institute (ANSI) standard applicable at its time of manufacture. The current standard is ANSI/ISEA Z87.1-2015. Competitors, coaches and event supervisors are not required to acquire a copy of the standard. The information in this document is sufficient to comply with current standards. Water is not a hazardous liquid and its use does not require protective eyewear unless it is under pressure or substances that create a hazard are added.

Compliant Eyewear Categories: If an event requires eye protection, the rules will identify one of these three categories. Compliance is simple as ABC:

CATEGORY A
- **Description:** Non-impact protection. They provide basic particle protection only
- **Corresponding ANSI designation/required marking:** Z87
- **Examples:** Safety glasses; Safety spectacles with side shields; and Particle protection goggles (these seal tightly to the face completely around the eyes and have direct vents around the sides, consisting of several small holes or a screen that can be seen through in a straight line)

CATEGORY B
- **Description:** Impact protection. They provide protection from a high inertia particle hazard (high mass or velocity)
- **Corresponding ANSI designation/required marking:** Z87+
- **Example:** High impact safety goggles

CATEGORY C
- **Description:** Indirect vent chemical/splash protection goggles. These seal tightly to the face completely around the eyes and have indirect vents constructed so that liquids do not have a direct path into the eye (or no vents at all). If you are able to see through the vent holes from one side to the other, they are NOT indirect vents
- **Corresponding ANSI designation/required marking:** Z87 (followed by D3 is the most modern designation but, it is not a requirement)
- **Example:** Indirect vent chemical/splash protection goggles

Examples of Non-Compliant Eyewear:
- Face shields/visors are secondary protective devices and are not approved in lieu of the primary eye protection devices below regardless of the type of vents they have.
- Prescription Glasses containing safety glass should not be confused with safety spectacles. “Safety glass” indicates the glass is made to minimize shattering when it breaks. Unless these glasses bear the Z87 mark they are not approved for use.

Notes:
1. A goggle that bears the Z87+ mark and is an indirect vent chemical/splash protection goggle will qualify for all three Categories A, B & C
2. VisorGogs do not seal completely to the face, but are acceptable as indirect vent chemical/splash protection goggles